CJ1W-NC $\square 8 \square$ - NC EtherCAT

Position control unit

Multi-axis point-to-point positioning controller over EtherCAT

- Position control units with $2,4,8$ or 16 axes.
- NC_82 models support up to 64 additional nodes: inverters, vision systems and distributed I/Os.
- Linear and circular interpolation.
- Linear and infinite axes management.
- Programming languages: ladder and function blocks. Certified PLCopen motion control function blocks.
- The unit can perfom various operation sequences in the memory operation data.
- CX-Programmer software for unit setup, EtherCAT network configuration and PLC programming.

System configuration

Specifications

Position control unit

Applicable PLCs		CJ-series V. 3.0 or later in order to use function blocks						
Possible unit number settings		0 to F						
number of units per PLC		10 units per Rack, 16 units in total (with expansion racks)						
Control method		EtherCAT commands (CoE)						
Controlled servo drives		Accurax G5 servo drives with EtherCAT built-in						
Controlled axes		2		8	16	$\begin{array}{\|l\|} \hline 4+64 \text { nodes } \\ \text { for remote } / / \mathrm{O}^{* 1} \\ \hline \end{array}$	$\left\|\begin{array}{\|l\|} \hline 8+64 \text { nodes } \\ \text { for remote } / / O_{1} \end{array}\right\|$	$16 \text { + } 64 \text { nodes }$ for remote I/O*
Virtual axes						When a physica as virtual axis.	axis is disabled	, it will operate
Node address setting range		1 to 2	1 to 4	1 to 8	1 to 16	$\begin{array}{\|l\|} \hline 1 \text { to } 4 \text { and } 17 \text { to } \\ 80^{* 2} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \text { to } 8 \text { and } 17 \text { to } \\ 80^{* 2} \end{array}$	$\begin{aligned} & 1 \text { to } 16 \text { and } 17 \\ & \text { to } 80^{* 2} \\ & \hline \end{aligned}$
I/O allocations	Common operating memory area	Words allocated in CPU bus unit area: 25 words						
	Axis operating memory area	Allocated in one of the following areas (user-specified): CIO, WR, DM, or EM area. Number of words allocated: 43 words for each node ($2+12$ output words, $13+16$ input words)						
	Memory operation memory areas	Allocated in one of the following areas (user-specified): CIO, WR, DM, or EM area Number of words allocated: 7 words for each task (3 output words, 4 input words)						
	1/O memory areas					Allocated in one specified): CIO, Number of words output words, 64 tion status words	of the following WR, DM, or EM s: 1,300 words 40 input words, s).	areas (userarea. maximum (640 20 communica-
Control command range	Position command range	-2,147,483,648 to 2,147,483,647 (command units)						
	Speed command range for position control	1 to 2,147,483,647 (command units/s)						
Control functions	Positioning functions	Memory operation or direct operation						
	Linear interpolation	Up to 2 axes Up to 4 axes						
	Circular interpolation	Up to 2 axes						
	Origin determination	- Origin search: establishes the origin using the specified search method. - Present position preset: changes the present position to a specified position to establish the origin. - Origin return: returns the axis from any position to the established origin. - Absolute encoder origin: establishes the origin using a servo motor that has an absolute encoder.						
	Jogging	Outputs a fixed speed in the CW or CCW direction.						
	Interrupt feeding	Performs positioning by moving the axis a fixed amount when an external interrupt input is received while the axis is moving.						
	Stop functions	Deceleration st	top and emergen	ncy stop.				
Auxiliary functions	Acceleration/deceleration curves	Sets either a trapezoidal (linear) curve or an S-curve (moving average).						
	Torque limit	Restricts the torque upper limit during position control.						
	Overrides	Multiplies the axis command speed by a specified ratio during operation. Axis setting: 0.01\% to 500\%						
	Servo parameter transfer	Reads and writes the servo drive parameters from the ladder program in the CPU unit.						
	Monitoring function	Monitors the control status of the servo drive's command coordinate positions, feedback position, current speed, torque, etc.						
	Software limits	Sets forward and reverse software limits for axis operation. Can be set for each axis.						
	Backlash compensation	Compensates for the amount of play in the mechanical system according to a set value.						
	Deviation counter reset	The position deviation in the servo drive's deviation counter can be reset to 0 (unit version 1.3 or later).						
	Teaching	This function can be used to record the present position into specified position data after moving to the desired position, e.g., by using jogging.						
EtherCAT master port	Drive Profile ${ }^{\text {³ }}$	CSP mode (CiA402 DriveProfile), \quad CSP, CSV, CST modes (CiA402 DriveProfile) ${ }^{4}$						
		Touch probe function (Latch function and Torque limit function						
	Communications cycle	250 us, 500 us, 1 ms or 2 ms depending on the number of slaves connected and slaves specifications.						
	Communications standard	IEC 61158 Type 12						
	Physical layer	100Base-TX (IEEE802.3)						
	Connector	RJ45 connector x 1						
	Communications media	Category 5 or higher (recommended: cable with double, aluminum tape and braided shielding)						
	Communications distance	Distance between nodes: 100 mmax .						
	Topology	Daisy chain only.						
Programming methods	Standard ladder	Directly over NC unit memory area						
	Function blocks	$\begin{array}{ll}\text { Using standard PLCopen motion control function blocks } & \\ & =\begin{array}{l}\text { PLCopen }\end{array} \\ & = \\ & =\text { motion } \\ & \text { control }\end{array}$						
	Sequence functions	The unit can perform various operation sequences in the memory operation data without affecting the ladder programming in the CPU. For continuous positioning and speed changes.						
		4 tasks $\times 500$ steps						
Applicable standards		Conforms to cULus and EC Directives.						
Internal current consumption		460 mA or less at 5 VDC						
Weight		110 g						

Notes: *1 Support for 64 I/O, inverter and vision system device nodes.
*2 Node address 17 to 80 are reserved for remote I/O slaves.
*3 This profile is used when the unit is connected to the Accurax G5 servo drive
*4 The CSV and CST modes are supported only with NC_82 unit version 1.3 or higher combined with CJ2H-CPU ver. 1.4 or higher.

Nomenclature

CJ1W-NC $\square \square \square$ - position control unit

Dimensions

CJ1W-NC $\square \square$ - position control unit

Ordering information

Position controller unit

Name	Model
Position controller unit - EtherCAT -16 axes + 64 nodes for remote I/O	CJ1W-NCF82
Position controller unit - EtherCAT -8 axes +64 nodes for remote I/O	CJ1W-NC882
Position controller unit - EtherCAT -4 axes + 64 nodes for remote I/O	CJ1W-NC482
Position controller unit - EtherCAT -16 axes	CJ1W-NCF81
Position controller unit - EtherCAT -8 axes	CJ1W-NC881
Position controller unit - EtherCAT -4 axes	CJ1W-NC481
Position controller unit - EtherCAT -2 axes	CJ1W-NC281

EtherCAT related devices

Servo system \& frequency inverter

Name	Model	
Accurax G5 servo drive EtherCAT built-in	Frequency inverter	R88D-KN $\square \square \square-E C T ~$
MX2 inverter with EtherCAT option board	EtherCAT option board	3G3MX-A \square
	3G3AX-MX2-ECT	

Note: Refer to servo system and frequency inverter sections for detailed specs and ordering information.

GX-Series I/O Blocks

Name	$24 \mathrm{VDC}, 6 \mathrm{~mA}, 1$-wire connection, expandable	Model
16 NPN inputs	$24 \mathrm{VDC}, 6 \mathrm{~mA}, 1$-wire connection, expandable	GX-ID1611
16 PNP inputs	$24 \mathrm{VDC}, 500 \mathrm{~mA}, 1$-wire connection, expandable	GX-ID1621
16 NPN outputs	$24 \mathrm{VDC}, 500 \mathrm{~mA}, 1$-wire connection, expandable	GX-OD1611
16 PNP outputs	$24 \mathrm{VDC}, 6 \mathrm{~mA}$ input, 500 mA output, 1-wire connection	GX-MD1621
8 inputs and 8 outputs, NPN	$24 \mathrm{VDC}, 6 \mathrm{~mA}$ input, 500 mA output, 1-wire connection	GX-MD1621
8 inputs and 8 outputs, PNP	$24 \mathrm{VDC}, 6 \mathrm{~mA}, 3$-wire connection	GX-ID1612
16 NPN inputs	$24 \mathrm{VDC}, 6 \mathrm{~mA}, 3$-wire connection	GX-ID1622
16 PNP inputs	$24 \mathrm{VDC}, 500 \mathrm{~mA}, 3$-wire connection	GX-OD1612
16 NPN outputs	$24 \mathrm{VDC}, 500 \mathrm{~mA}, 3$-wire connection	GX-OD1622
16 PNP outputs	$24 \mathrm{VDC}, 6 \mathrm{~mA}$ input, 500 mA output, 3-wire connection	GX-MD1612
8 inputs and 8 outputs, NPN	$24 \mathrm{VDC}, 6 \mathrm{~mA}$ input, 500 mA output, 3-wire connection	GX-MD1622
8 inputs and 8 outputs, PNP	$250 \mathrm{VAC}, 2 \mathrm{~A}, 1$-wire connection, expandable	GX-OC1601
16 relay outputs	$\pm 10 \mathrm{~V}, 0-10 \mathrm{~V}, 0-5 \mathrm{~V}, 1-5 \mathrm{~V}, 4-20 \mathrm{~mA}$	GX-AD0471
4 analogue inputs, current/voltage	$\pm 10 \mathrm{~V}, 0-10 \mathrm{~V}, 0-5 \mathrm{~V}, 1-5 \mathrm{~V}, 4-20 \mathrm{~mA}$	GX-DA0271
2 analogue outputs, current/voltage	500 kHz Open collector input	GX-EC0211
2 encoder open collector inputs	4 MHz Line driver input	GX-EC0241
2 encoder line-driver inputs		

Note: Refer to Automation systems catalogue for detailed specs and ordering information.
Vision system

Name	Specification	Model
Vision system with EtherCAT interface	NPN	FZM1-350-ECT
	PNP	FZM1-355-ECT

Note: Refer to vision system documentation for detailed specs and ordering information.

Computer software

Specifications	Model
CX-One version 4 or higher	CX-One
CX-Programmer version 9.12 or higher	CX-Programmer

[^0]Cat. No. I78E-EN-01 In the interest of product improvement, specifications are subject to change without notice.

[^0]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
 To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

